Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
PLoS One ; 17(4): e0265815, 2022.
Article in English | MEDLINE | ID: covidwho-1855003

ABSTRACT

Mathematical models of infectious diseases exhibit robust dynamics, such as stable endemic, disease-free equilibriums or convergence of the solutions to periodic epidemic waves. The present work shows that the accuracy of such dynamics can be significantly improved by including global effects of host movements in disease models. To demonstrate improved accuracy, we extended a standard Susceptible-Infected-Recovered (SIR) model by incorporating the global dynamics of the COVID-19 pandemic. The extended SIR model assumes three possibilities for susceptible individuals traveling outside of their community: • They can return to the community without any exposure to the infection. • They can be exposed and develop symptoms after returning to the community. • They can be tested positively during the trip and remain quarantined until fully recovered. To examine the predictive accuracy of the extended SIR model, we studied the prevalence of the COVID-19 infection in six randomly selected cities and states in the United States: Kansas City, Saint Louis, San Francisco, Missouri, Illinois, and Arizona. The extended SIR model was parameterized using a two-step model-fitting algorithm. The extended SIR model significantly outperformed the standard SIR model and revealed oscillatory behaviors with an increasing trend of infected individuals. In conclusion, the analytics and predictive accuracy of disease models can be significantly improved by incorporating the global dynamics of the infection.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , Epidemiological Models , Humans
3.
Int J Environ Res Public Health ; 18(21)2021 11 01.
Article in English | MEDLINE | ID: covidwho-1488605

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The United States (U.S.) has the highest number of reported COVID-19 infections and related deaths in the world, accounting for 17.8% of total global confirmed cases as of August 2021. As COVID-19 spread throughout communities across the U.S., it became clear that inequities would arise among differing demographics. Several researchers have suggested that certain racial and ethnic minority groups may have been disproportionately impacted by the spread of COVID-19. In the present study, we used the daily data of COVID-19 cases in Kansas City, Missouri, to observe differences in COVID-19 clusters with respect to gender, race, and ethnicity. Specifically, we utilized a retrospective Poisson spatial scan statistic with respect to demographic factors to detect daily clusters of COVID-19 in Kansas City at the zip code level from March to November 2020. Our statistical results indicated that clusters of the male population were more widely scattered than clusters of the female population. Clusters of the Hispanic population had the highest prevalence and were also more widely scattered. This demographic cluster analysis can provide guidance for reducing the social inequalities associated with the COVID-19 pandemic. Moreover, applying stronger preventive and control measures to emerging clusters can reduce the likelihood of another epidemic wave of infection.


Subject(s)
COVID-19 , Pandemics , Ethnicity , Female , Humans , Kansas/epidemiology , Male , Minority Groups , Missouri/epidemiology , Retrospective Studies , SARS-CoV-2 , United States
SELECTION OF CITATIONS
SEARCH DETAIL